geom_contour#

geom_contour(mapping=None, *, data=None, stat=None, position=None, show_legend=None, inherit_aes=None, manual_key=None, sampling=None, tooltips=None, bins=None, binwidth=None, color_by=None, **other_args)#

Display contours of a 3d surface in 2d.

Parameters:
mappingFeatureSpec

Set of aesthetic mappings created by aes() function. Aesthetic mappings describe the way that variables in the data are mapped to plot “aesthetics”.

datadict or Pandas or Polars DataFrame

The data to be displayed in this layer. If None, the default, the data is inherited from the plot data as specified in the call to ggplot.

statstr, default=’contour’

The statistical transformation to use on the data for this layer, as a string.

positionstr or FeatureSpec, default=’identity’

Position adjustment. Either a position adjustment name: ‘dodge’, ‘dodgev’, ‘jitter’, ‘nudge’, ‘jitterdodge’, ‘fill’, ‘stack’ or ‘identity’, or the result of calling a position adjustment function (e.g., position_dodge() etc.).

show_legendbool, default=True

False - do not show legend for this layer.

inherit_aesbool, default=True

False - do not combine the layer aesthetic mappings with the plot shared mappings.

manual_keystr or layer_key

The key to show in the manual legend. Specify text for the legend label or advanced settings using the layer_key() function.

samplingFeatureSpec

Result of the call to the sampling_xxx() function. To prevent any sampling for this layer pass value “none” (string “none”).

tooltipslayer_tooltips

Result of the call to the layer_tooltips() function. Specify appearance, style and content. Set tooltips=’none’ to hide tooltips from the layer.

binsint

Number of levels.

binwidthfloat

Distance between levels.

color_by{‘fill’, ‘color’, ‘paint_a’, ‘paint_b’, ‘paint_c’}, default=’color’

Define the color aesthetic for the geometry.

other_args

Other arguments passed on to the layer. These are often aesthetics settings used to set an aesthetic to a fixed value, like color=’red’, fill=’blue’, size=3 or shape=21. They may also be parameters to the paired geom/stat.

Returns:
LayerSpec

Geom object specification.

Notes

geom_contour() displays contours of a 3d surface in 2d.

Computed variables:

  • ..level.. : height of a contour.

geom_contour() understands the following aesthetics mappings:

  • x : x-axis coordinates of the center of rectangles, forming a tessellation.

  • y : y-axis coordinates of the center of rectangles, forming a tessellation.

  • z : value at point (x, y).

  • alpha : transparency level of a layer. Accept values between 0 and 1.

  • color (colour) : color of the geometry lines. For more info see Color and Fill.

  • size : lines width.

  • linetype : type of the line. Accept codes or names (0 = ‘blank’, 1 = ‘solid’, 2 = ‘dashed’, 3 = ‘dotted’, 4 = ‘dotdash’, 5 = ‘longdash’, 6 = ‘twodash’), a hex string (up to 8 digits for dash-gap lengths), or a list pattern [offset, [dash, gap, …]] / [dash, gap, …]. For more info see Line Types.


To hide axis tooltips, set ‘blank’ or the result of element_blank() to the axis_tooltip, axis_tooltip_x or axis_tooltip_y parameter of the theme().

Examples

 1import numpy as np
 2from scipy.stats import multivariate_normal
 3from lets_plot import *
 4LetsPlot.setup_html()
 5np.random.seed(42)
 6n = 25
 7x = np.linspace(-1, 1, n)
 8y = np.linspace(-1, 1, n)
 9X, Y = np.meshgrid(x, y)
10mean = np.zeros(2)
11cov = [[1, .5],
12       [.5, 1]]
13rv = multivariate_normal(mean, cov)
14Z = rv.pdf(np.dstack((X, Y)))
15data = {'x': X.flatten(), 'y': Y.flatten(), 'z': Z.flatten()}
16ggplot(data, aes(x='x', y='y', z='z')) + geom_contour()

 1import numpy as np
 2from lets_plot import *
 3LetsPlot.setup_html()
 4n = 100
 5a, b = -1, 0
 6x = np.linspace(-3, 3, n)
 7y = np.linspace(-3, 3, n)
 8X, Y = np.meshgrid(x, y)
 9Z = np.exp(-5 * np.abs(Y ** 2 - X ** 3 - a * X - b))
10data = {'x': X.flatten(), 'y': Y.flatten(), 'z': Z.flatten()}
11ggplot(data, aes(x='x', y='y', z='z')) + \
12    geom_contour(aes(color='..level..'), bins=3, size=1) + \
13    scale_color_gradient(low='#dadaeb', high='#3f007d')

1import numpy as np
2from lets_plot import *
3LetsPlot.setup_html()
4n = 1000
5np.random.seed(42)
6data = {'x': 10 * np.random.normal(size=n) - 100, \
7        'y': 3 * np.random.normal(size=n) + 40}
8ggplot(data, aes('x', 'y')) + geom_livemap() + \
9    geom_contour(stat='density2d')