sampling_vertex_dp#
- sampling_vertex_dp(n, polygon=None)#
Simplify a polyline using the Douglas-Peucker algorithm.
- Parameters:
- nint
Number of items to return.
- polygonbool, default=None
If True, the input data is considered as a polygon rings. If False, the input data is considered as a polyline. None for auto-detection.
- Returns:
- FeatureSpec
Vertices sample specification.
Notes
Vertex sampling is designed for polygon simplification.
Examples
1import numpy as np 2from scipy.stats import multivariate_normal 3from lets_plot import * 4LetsPlot.setup_html() 5np.random.seed(42) 6n = 300 7x = np.linspace(-1, 1, n) 8y = np.linspace(-1, 1, n) 9X, Y = np.meshgrid(x, y) 10mean = np.zeros(2) 11cov = [[1, .5], 12 [.5, 1]] 13rv = multivariate_normal(mean, cov) 14Z = rv.pdf(np.dstack((X, Y))) 15data = {'x': X.flatten(), 'y': Y.flatten(), 'z': Z.flatten()} 16ggplot(data, aes(x='x', y='y', z='z')) + \ 17 geom_contour(sampling=sampling_vertex_dp(100))