scale_size_manual#
- scale_size_manual(values, name=None, breaks=None, labels=None, lablim=None, limits=None, na_value=None, guide=None, format=None)#
Create your own discrete scale for size aesthetic.
- Parameters:
- valueslist of str or dict
A set of aesthetic values to map data values to. If this is a list, the values will be matched in order (usually alphabetical) with the limits of the scale. If a dictionary, then the values will be matched based on the names.
- namestr
The name of the scale - used as the axis label or the legend title. If None, the default, the name of the scale is taken from the first mapping used for that aesthetic.
- breakslist or dict
A list of data values specifying the positions of ticks, or a dictionary which maps the tick labels to the breaks values.
- labelslist of str or dict
A list of labels on ticks, or a dictionary which maps the breaks values to the tick labels.
- lablimint, default=None
The maximum label length (in characters) before trimming is applied.
- limitslist
Continuous scale: a numeric vector of length two providing limits of the scale. Discrete scale: a vector specifying the data range for the scale and the default order of their display in guides.
- na_value
Missing values will be replaced with this value.
- guide
A result returned by guide_legend() function or ‘none’ to hide the guide.
- formatstr
Define the format for labels on the scale. The syntax resembles Python’s:
‘.2f’ -> ‘12.45’
‘Num {}’ -> ‘Num 12.456789’
‘TTL: {.2f}$’ -> ‘TTL: 12.45$’
For more info see Formatting.
- Returns:
- FeatureSpec
Scale specification.
Notes
Create your own discrete scale for size aesthetic. Values are numbers, defining sizes.
Examples
1import numpy as np 2from lets_plot import * 3LetsPlot.setup_html() 4x = np.arange(10) 5c = np.where(x < 5, 'a', 'b') 6ggplot({'x': x, 'y': x, 'c': c}, aes('x', 'y')) + \ 7 geom_point(aes(size='c'), shape=1) + \ 8 scale_size_manual(name='size', values=[5, 8])