scale_x_datetime#
- scale_x_datetime(name=None, *, breaks=None, labels=None, lablim=None, limits=None, expand=None, na_value=None, format=None, position=None)#
Position scale x for date/time data.
- Parameters:
- namestr
The name of the scale - used as the axis label or the legend title. If None, the default, the name of the scale is taken from the first mapping used for that aesthetic.
- breakslist or dict
A list of data values specifying the positions of ticks, or a dictionary which maps the tick labels to the breaks values.
- labelslist of str or dict
A list of labels on ticks, or a dictionary which maps the breaks values to the tick labels.
- lablimint, default=None
The maximum label length (in characters) before trimming is applied.
- limitslist
A vector of length two providing limits of the scale.
- expandlist
A numeric vector of length two giving multiplicative and additive expansion constants. The vector size == 1 => only multiplicative expand (and additive expand by default). Defaults: multiplicative = 0.05, additive = 0.
- na_value
Missing values will be replaced with this value.
- formatstr
Define the format for labels on the scale. The syntax resembles Python’s:
‘%d.%m.%y’ -> ‘06.08.19’
‘%B %Y’ -> ‘August 2019’
‘%a, %e %b %Y %H:%M:%S’ -> ‘Tue, 6 Aug 2019 04:46:35’
For more info see Formatting.
- positionstr
The position of the axis:
‘left’, ‘right’ or ‘both’ for y-axis;
‘top’, ‘bottom’ or ‘both’ for x-axis.
- Returns:
- FeatureSpec
Scale specification.
Examples
1import datetime as dt 2import numpy as np 3from lets_plot import * 4LetsPlot.setup_html() 5n = 31 6np.random.seed(42) 7d = [dt.datetime(2021, 1, 1) + dt.timedelta(days=d) 8 for d in range(n)] 9t = np.random.normal(loc=-5, scale=6, size=n) 10ggplot({'d': d, 't': t}, aes('d', 't')) + \ 11 geom_histogram(aes(fill='t'), stat='identity', color='black') + \ 12 scale_x_datetime() + \ 13 scale_fill_gradient2(low='#2c7bb6', high='#d7191c')